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Abstract

Image inpainting is the task of reconstructing missing
regions corrupted by irregular holes or Mosaics which has
been an active topic in computer vision research. Although
various models that have emerged in recent years can ef-
fectively restore corrupted images, most of them focus on
restoring landscape photos. For human faces with a large
amount of high-frequency information, it usually takes a
long time to train but difficult to achieve good results. Our
work is aimed at restoring human face images covered with
irregular holes with better inpainting effects. Based on the
PD-GAN model, we modified the network structure, net-
work layer implementation, and added specific loss func-
tions for face restoration. To validate our network per-
formance, we completed ablation experiments for different
variables, and performed qualitative and quantitative anal-
ysis concerning face restoration effects.

1. Introduction

Face inpainting is an important research direction in
the field of computer vision, which has many real-world
application scenarios. How to repair the face covered by
masks or mosaics, that is, to repair the irregular holes
becomes particularly important. Many image inpainting
model helps deal with image restoration and context
removal tasks, which utilizes corrupted images and tries
to restore the whole facial features. Most of these models
are based on the principle of partial convolution, and these
methods can effectively repair landscape photos. However,
for high-frequency information such as faces, problems
such as distortion, blurring, and irreparable facial features
often occur.

In recent year, Generative Adversarial Network (GAN)
model [5] has better performance in face restoration than
traditional image restoration methods. = However, the
problem that the facial features cannot be repaired still
exists, and we found in the experiment that the GAN model

will produce artifacts in the repaired part. In order to solve
these problems in face restoration, we propose a new model
based on PD-GAN model [&], which is dedicated to more
perfect restoration of faces.

Our model is based on the PD-GAN model [8], but mod-
ified the network structure, network layer implementation,
and added specific loss functions, which enables our model
to perform better in face restoration. Given masked facial
images, our model would generate the whole image with
similar pixel values and semantic meanings to the original
one. Then, we validated our network performance with
ablation experiments for different variables and evaluated
the model by comparing the original and generated images.
Qualitatively, inpainted images would be displayed to
demonstrate our inpainting performance. At the same time,
quantitatively, PSNR, SSIM [13] would be utilized to eval-
uate how the generative model is performed pixel-wisely.

In summary, the major works we have done are as fol-
lows:

* We modified the network structure and network layer
implementation of PD-GAN to make the probability
change between pixels more continuous and reduce the
generation of artifacts.

* We proposed a MASK loss function and utilized the
Heatmap loss function to focus the inpainting target
more on human face and achieve better facial restora-
tion results.

* Ablation experiments are conducted to validate the
proposed network. The experiment result demon-
strates the satisfactory level of our model in compar-
ison to several other existing models.

2. Related Work
2.1. Image inpainting

Image inpainting is a reconstruction technology aiming
to restore the missing regions corrupted by irregular holes



or Mosaics. The traditional approach is to utilize Partial
Convolution models [7], proposed by Nvidia, which has a
long-term impact on subsequent.

In recent research, many of the frameworks proposed for
the image inpainting task is based on the Generative Ad-
versarial Network [3]. There are serval approaches to the
image inpainting problem. PD-GAN [8] trains a GAN us-
ing the proposed SPDNorm to generate masked regions, and
UctGAN [14] utilizes an encoder-decoder network similar
to conditional VAE [12]. Our model is based on the princi-
ple of PD-GAN with improvements on the SPDNorm layer.

2.2. PD-GAN

The PD-GAN network has two stages. The first stage
pre-trains an inpainting network using Partial Convolu-
tions [7], which can generate a coarse prediction as the
prior information. In the second stage, The model samples
the latent vector z from a Random Noise and modulates z
with the prior information based on the SPDNorm Residual
block.

The SPDNorm layer is based on the idea of Batch Norm.
In the former model inspried PD-GAN [&] - SPADE [1 1],
the masks are first projected onto an embedding space and
then convolved to produce the modulation parameters -y
and B. The produced v and 8 are multiplied and added to
the normalized activation element-wise.

D.l’:l

Figure 1. This figure is from PD-GAN: Probabilistic Diverse GAN
for Image Inpainting and illustrates how the Hard SPDNorm de-
cides probability which decreases from boundary to center. The
probability decreases at a constant valve k, but it ignores the num-
ber of surrounding ground truth pixels will affect the probability
of hole pixels.

In the PD-GAN [8] case, the SPDNorm Residual block
consists of Hard SPDNorm and Soft SPDNorm. Figure 1
shows an example of Hard SPDNorm, which is a direct

probability map. For the pixels masked by irregular holes,
find the nearest ground truth distance ¢ , And the probability
that this pixel can obtain information from the surrounding

ground truth is set to %

However, this arbitrary method of setting the probabil-
ity ignores the number of surrounding ground truth pixels
will affect the probability of hole pixels. The probabil-
ity changes between pixels are discrete and the interval is
large. As the main probability assignment method, Hard
SPDNorm may be one of the main causes of artifacts. In our
model, a relatively continuous value is taken for the quan-
titative relationship between the pixel and the surrounding
ground truth.

2.3. Super-FAN

Super-FAN is a face super-resolution model proposed
in [2] aiming to super-resolve very low-resolution faces.
Super-FAN proposed a Face Alignment Network (FAN)
with 2 Hourglass models [9], a network for facial landmark
localization through heatmap regression to enforce facial
structural consistency. FAN utilizes the concept of heatmap
regression [1] which represents each landmark by an out-
put channel containing a 2D Gaussians centered at the land-
mark’s location [2].

3. Data
3.1. Datasets

We trained our model to perform diverse inpainting
tasks on facial images on CelebAMask-HQ [6] dataset,
and use irregular masks provided by [7]. The choice of
Ground truth and masks has a great impact on the accuracy
of training. We carefully selected and designed 100 masks
instead of random generation, these masks can effectively
cover facial features, which allows us to be more specific
to facial features. At the same time, these masks contain
large block occlusions and interval small occlusions, which
avoids overfitting of our model and makes it perfect for
various tasks.

| Name | Number of images
CelebAMask-HQ [6] 7,000
CelebAMask-HQ(Skin) [6] 7,000
Masks [7] 100

Table 1. Our datasets

Shown in Table 1, For the ground truth, we selected 7000
images from the CelebAMask-HQ [6] dataset.Before we
fed them to our model, there were inspection and pre-
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Figure 2. Our model pipeline

processing steps. Skin masks (the value of the face is 1) are
also fed to help us quickly obtain the facial pixel area, which
is easy for the calculation of the subsequent loss function.

3.2. Preprocessing

The preprocessing process includes multiple stages, the
first is the processing of ground truth and mask images to
make these images the same size. In each epoch, we select
the ground truth image and masks in a certain order,which
helps to compare the effects of different methods on the
same image and mask in our subsequent ablation experi-
ments. After selecting a batch of ground truth images, we
stack them together with pixel-wise multiplication.

4. Method
4.1. Network Architectures

In order to ensure the diversity of generated images,
our model has a similar structure to PD-GAN [&], which
does not use an Encoder-Decoder structure to inpaint
the corrupted parts, but generates diverse image content
according to different Random Noise inputs. In this section,
we will introduce the pipeline of our model, as well as the
improvements in response to the potential problems.

Specific improvement measures include: In the upsam-
pling process, we use PixelShuffle instead of Transpose
convolution to avoid the “checkerboard pattern”. As shown
in [10], transpose convolution may result in ”checkerboard
patterns” when dealing with bright-colored images. This
pattern is caused by the overlapping of transpose convolu-
tion operations. To tackle this, we use two more convolu-

tion layers and a pixel-shuffle layer to replace the original
transpose convolution layers.

4.2. Hard SPDNorm Inprovement

Intuitively, the masked pixel is to the hole boundary,
their should be stronger constraints of the pixel value. [&],
which is because more prior information is needed to keep
the pixel value consistent with its neighbouring ground
truth as the Figure 3 shows.

Figure 3. Improved Hard SPDNorm example, the ivoroy color pix-
els stand for irregular boundary of ground truth. For the masked
pixels (purple), its pixel value depends on the number of neigh-
boring ground truth. We acquire pixel value by convolution then
divided by kernel size.

As an improvement to Hard SPDNorm, For the masked
M region, we apply n iterative operations to it. The mask




after the ¢-th dilation operation is M;. During the update
process, M; is decided by the kernal convolution values of
M;_1. N(zx,y) denotes the neighbouring region of centered
at (x,y), the size of neighbouring region would increase as
the upsampling continues. Mathematically, our mask up-
date process can be expressed as:

M;_1(a,b)

M;(z,y) = # of N(z,y)
(z,9) {O otherwise

4.3. Loss Function

The loss functions in the PD-GAN model [8] consist of
perceptual diversity loss, reconstruction loss, feature match-
ing loss [7] and hinge adversarial loss. These loss functions
optimize the network concerning diversity of generated im-
ages based on the prior information. However, these general
loss functions do not have a significant effect on the human
face. On these basis, we propose and use Mask loss function
and FAN loss function.

4.3.1 Skin-Mask Loss Function

As referred in table 1, we also loaded 7000 corresponding
skin images from the CelebAMask-HQ [6] dataset. These
masks help us quickly obtain the facial area with pixel-wise
multiplication. We can add a specific loss function to the
pixels in this area, which enables our model have a better
repairing effect on facial details.

(b) Skin mask

(a) Image

Figure 4. Figure 4b displays the facial mask of the person on the
left, which is called the skin image in the dataset.

For better facial features inpainting, it is appropriate to add
an L1 loss:

Lr1(G)= > |G~ Gt|ly * Mask
All G

4.3.2 Heatmap Loss Function

From preliminary experiments, we found that some in-
painted images have significant misalignments in the fa-

if 20y en () Mi—1(a,b) >0

Figure 5. from [4] Landmarks (red dots) of a human face

cial structures compared to the ground truth. And some
inpainted images have weak boundaries on facial features.
Since the primary loss function overlooks facial struc-
tures, the model is unaware that facial feature misalignment
causes significant semantic differences. Therefore, we uti-
lize the Heatmap Loss proposed in [2]. And the heatmap
loss is defined as:

1 & — 2
Eheatmap = N ZZ (]\4{%7 — M:’Lj)

i=1 ij

We obtain M;"; and J\/4?J by running FAN on the ground
truth images and our inpainted images. And the heatmap
corresponding to the n-th landmark at pixel (4, j) is M,";.

4.4. Overall Training Loss

The overall training loss of our model:

£total = Q% LMask + B * Eheatmap + £PDGAN

where « and (3 are the corresponding weights

5. Experiment
5.1. Experiment Setup

We evaluated our proposed model on first 7000 images
in CelebAMAask-HQ [6] and 100 irregular masks. We set
the inpainting result of Partial Convolution (PC) [7] as prior
information, using pretrained model provided in PDGAN.
The mask and image are resized to 256*256 as network in-
put. Our model is optimized using Adam optimizer. The
initial learning rate is 0.001 and we use linear learning rate
decay schedule to train the model. The latent vector dimen-
sion is 128. We train the network for 120 epochs with batch
size of 8 and it completes one epoch in 9 minutes. For the
loss function, we maintain the original setting in PDGAN
and set o as 0.5, (3 as 10.
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Figure 6. Comparison of inpainting image.

5.2. Comparing with Existing Work

We compare with the following inpainting models:
PConv [7], PD-GAN [8] and our model and they are trained
using official config. The result of inpainting irregular
holes on CelebAMask-HQ [6] is shown in Figure 5.

The first three rows are masked image, mask and ground
truth. The next two rows are the generated image of PConv
and PD-GAN, while the last part is result of our model.
PConv and PD-GAN can generate the roughly correct struc-
ture of originally image, but the result contains blurry con-
tent and sprial stain especially when the masked regions are
dispersive and eyes or lip are masked. The result generated
by our model is more natural. The intensity on the edge of
mask is much smoother and the blurry problem is alleviated
due to restrictions on intensity values in skin mask region.

5.3. Ablation Study

We perform ablation study on FAN loss and Mask loss
to evaluate their effects on experiment results.

| Model Name | PSNR | SSIM |
PConv [7] 21.3485 | 0.9307
PD-GAN [8] 22.4371 | 0.9448
FAN1 MASKO | 22.7748 | 0.9390
FANO MASK1 | 23.4279 | 0.9562
Our Model 24.0219 | 0.9593

Table 2. Quantitative ablation study on FAN loss and Mask loss

To test the performance of image inpainting, we use
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) [13] as evaluation criteria for image quality and



PConv

120 epoch 90 epoch

et

Mask

Msked Image

60 epoch 30 epoch

Figure 7. Results in different epoches

similarity among two images respectively. FAN1 MASKO
only involves Fan loss and PDGAN loss and FANO MASK1
includes Mask loss and PD-GAN loss. To avoid effects of
other module, remaining parameters are same. The evalu-
ation result is shown in Table 2. Our model outperforms
PDGAN and PConv and Mask Loss contributes signifi-
cantly towards improvement on similarity, while Fan Loss
promotes image quality.

5.4. Learning Process

We found some interesting facts during the training
process by comparing the outputs for a single gt-mask
pair at different training stages. As shown in Figure 7, our
model first learns to use priors given by the Partial Conv
based network. However, priors often gives blurred and
unobvious Facial structures.

Around the 60th epoch, our model gradually learns to
sharpen those areas. Instead of giving blurring patch-like
results, our model focuses on facial structures. Then
in about the 90th epoch, our model learned to enhance
those missing facial features. However, at this stage, the
recovered features are not entirely reasonable (e.g. the
non-continuous nose bridge).

Toward the end of the training, our model starts to output
clear and reasonable results. The reconstructed facial struc-
ture is more reasonable, and the transition between masked-
unmasked areas becomes smooth.

5.5. Fail cases

Two typical fail cases are shown in Figure 8. The
leading cause of such failures is that the model cannot
distinguish objects (e.g., lollipops) and poster words from
human faces. The model regards those parts as components
of human faces and tries to extend features to the generated
parts—this results in mixing up facial features with non-
face features and is unreasonable to humans.

Mased Image gt Output
Figure 8. Fail cases of our model
The solution to such fails may need further enhancement

of the ability to understand more real-world objects, words,
and phrases.



6. Conclusion

We modified the PD-GAN network structure and im-
proved the network layer implementation of diversity map.
By aggregating Skin-Mask loss and Fan loss, our model has
better capacity to inpaint irregular holes on facial image.
In the process of testing, our model could restore the im-
age by generating semantically meaningful results on the
masked areas given a single masked facial image. Quali-
tative and quantitative analysis are conducted and demon-
strate that our model generates high-quality reconstruction
image with less blurry content. In future work, we will train
our model on more cases to enhance the ability to under-
stand real-world objects and further balance the diversity
and image quality.
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