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Abstract

Human locomotion can be challenging to reproduce, as
it involves synchronizing the legs and arms motion and re-
quires a careful representation of ankle movements to pro-
duce natural results. We present a real-time procedural lo-
comotion controller for interactively controlled digital hu-
mans. Our approach is based on translating Biomechanical
principles into control and planning strategies. It is able
to synthesize walking and running motion in straight and
curved lines and supports walking on uneven terrains. Our
implementation can be found on GitHub [6].

1. Introduction
In an increasingly digital society, digital humans are be-

coming more and more ubiquitous. These digital characters
are important for many applications ranging from entertain-
ment [12] to healthcare [5] and even industry applications
such as in manufacturing [36]. In many of these applica-
tions the characters need to interact with their environment
which often involves walking around. Hence, it is impor-
tant to be able to realistically animate the motion of digital
humans.

Creating natural motion is challenging since humans can
easily notice if something about the motion is off. Hence,
the main challenge lies in avoiding the uncanny valley [21].
While there are various different methods, they all have
their own issues and shortcomings which will be explained
in Section 2. We aim to address these problems by relying
on biomechanical principles.

Our method is based on a heavily modified version of a
simple controller for a quadrupedal robot. The quadrupedal
motion was based on simple precomputed limb trajectories
according to a footstep planner. The joint configuration
of the robot is then set using Inverse Kinematics, which
maps target limb positions to joint configurations that re-
sult in those targets. Each leg of the robot was controlled by
tracking a single point (an end effector) on that leg. How-
ever, for the bipedal motion a single end effector per limb is
not sufficient to achieve realistic motion. Instead, we track

both the position of the heel and the toe. The computation
of the heel and toe trajectories is heavily inspired by the
gait cycle, a biomechanical concept [13] [26]. Hence, we
needed more fine-grained control than what was offered by
the quadrupedal controller. We achieved this by rewriting
all of planning and controls from scratch. Bipedal motion is
also supported by upper body movement which we directly
control by setting the respective joint angles.

In summary, our main contribution lies in the formu-
lation of biomechanically inspired control and planning
strategies that are able to synthesize realistic bipedal mo-
tion based on interactive user inputs.

2. Related Work
Several approaches have emerged to enable the gener-

ation of natural locomotion for articulated models. These
approaches include Kinematics-based, Physics-based,
Reinforcement-Learning-based, and Motion-Matching-
based methods. In this section, we will provide a concise
overview of these methods, highlighting their respective
shortcomings. Finally we will give a review of the main
biomechanical concept that guided our solution: the human
gait cycle.

Kinematics: Kinematics-based control is a procedural
locomotion control method that utilizes various tech-
niques such as Motion Fields [17], Interpolated Motion
Graphs [28], and Low-Dimensional Embeddings [18] to
generate motion. The effectiveness of the kinematic model
is directly linked to the quality and diversity of the motion
data [23]. Moreover, the generalization of the kinematic-
based control approach is constrained when faced with
new or unfamiliar environments. The model’s performance
tends to degrade when confronted with scenarios outside
the scope of its training data.

Physics: To enhance the versatility and robustness of the
controller, physics-based models are employed. These
models simulate the underlying dynamics and constraints
of the system, enabling the controller to respond to ex-
ternal forces and environmental conditions [11, 34]. By
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utilizing a single model-free physics-based framework, a
broad spectrum of motion can be simulated [3]. While
physics-based models have proven useful in generating
motion controllers for both humanoid and non-humanoid
robots, they still encounter challenges related to motion
quality and long-term planning [23]. They often struggle
with generating coherent and realistic long-term motion
trajectories.

Reinforcement Learning: Reinforcement learning meth-
ods have gained significant popularity in the locomotion
generation field, particularly for developing controllers
that target various actions. These methods employ either
the Value Iteration [10, 18, 24] or utilize Deep Neural
Network models [19, 20, 25] with techniques like Policy
Gradient [29, 30]. Traditionally, reinforcement learning
algorithms require well-defined reward functions to guide
the learning process. It becomes challenging to design
conditioned reward functions that effectively capture the
complexity and nuances of natural motion [33]. Common
problems such as speed control, gait synchronization, and
natural arm swing are not easily addressed by artificially
designed reward functions [23]. Moreover, difficult tasks
such as maintaining balance, adapting to different terrains,
and achieving smooth transitions between different loco-
motion modes further complicate the reward functions.

Motion Matching: Motion matching is another approach
to motion generation that utilizes deep learning meth-
ods [23]. It relies on generative neural network models to
establish responsive simulated character controllers based
on unstructured motion capture data [1, 7]. This technique
exhibits strong predictability, allowing for accurate and
realistic motion generation. However, the effectiveness
and quality of motion matching heavily depend on the
diversity and richness of the motion capture dataset.
Another challenge associated with motion matching is the
increasing memory demand as the motion capture data
array grows [15]. Storing and processing large amounts of
motion capture data can be resource-intensive, requiring
significant memory resources.

The Human Gait Cycle: In biomechanical literature, the
human gait cycle is generally modelled as two phases; The
stance and the swing phase [13] [26]. In the stance phase,
the foot is flat on the ground and starts ahead of the center
of mass. The weight is fully supported by the foot and as
the gait cycle continues, the foot moves further back until
the heel eventually leaves the ground. Towards the end of
the stance, the weight is slowly released from the toe which
then stops contact with the ground as well. This final lift-
ing of the toe initializes the swing phase. In this phase the
leg moves forward, aiming at the target location of the heel

strike. During heel strike, the heel starts contact with the
ground while the toe slowly moves towards the ground as
well, starting to support weight on this foot. This completes
one gait cycle. This cycle is repeated for both legs, with an
offset of half a cycle length [16].

3. Method
To be able to procedurally synthesize full-body motion

in real time, we need to convert our targets for the end
effectors to joint angles. This can be achieved by using
Inverse Kinematics, which will be explained in detail in
Section 3.1. Because these targets are sparse, we make
use of various interpolation techniques explained in Sec-
tion 3.2 to generate smooth motion, which is essential for
realism. To find the end effector targets in the first place, we
use a biomechanically-inspired controller for the legs (Sec-
tion 3.4). The motion of the legs then influences the move-
ment of the base (Section 3.5) and the swing of the arms
(Section 3.6). As extensions to walking in a straight line,
we discuss solution to three additional gait styles: Walking
along curved trajectories Section 3.7, walking on uneven
terrain Section 3.8 and finally we also investigate a con-
troller for running Section 3.9.

3.1. Inverse Kinematics

3.1.1 The Inverse Kinematics Problem

Inverse Kinematics (IK) refers to the problem of finding a
joint configuration Θ := {θj}

njoints
j=1 that results in specified

target positions {p⃗i}nEE
i=1 (in the world coordinate frame) for

a set of nEE different end effectors. More specifically, IK
refers to the following non-linear least squares problem:

Θ∗ = argmin
Θ

nEE∑
i=1

||p⃗i − FK(q⃗i; Θ)||22 (1)

where q⃗i are the end effector positions in the body coordi-
nate system and FK(q⃗i; Θ) is the Forward Kinematics func-
tion that maps the end effector positions from the body to
the world coordinate system. A common approach for solv-
ing this optimization problem is the Gauss-Newton method
where the joint configuration is iteratively updated accord-
ing to the update rule

Θk+1 = Θk + (JTJ)−1(JT (p⃗i − FK(q⃗i; Θ
k)) (2)

where J is the Jacobian ∂FK(q⃗i;Θ
k)

∂Θk . Despite its simplicity,
this method achieves good tracking performance of the de-
sired end effector positions.

3.1.2 Joint Constraints

Naively applying the Gauss-Newton iteration will result in
unnatural poses as seen in Figure 1. This is due to the
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Figure 1. While the target position of the heel is perfectly tracked,
the resulting pose is unnatural due to not respecting joint limits.

unconstrained nature of Equation (1). As there are multi-
ple possible configurations that result in a given target po-
sition, it is vital to choose the pose that is most natural.
This can be achieved by introducing joint limits, as hu-
man joints can not be arbitrarily rotated. Hence, we need
to add the constraints θmin

j ≤ θj ≤ θmax
j to Equation (1).

A straightforward modification would be to apply clipping
to the solution proposed by the iterative method, i.e. set-
ting θ̃j = min(max(θj , θ

min
j ), θmax

j ). While this results in
configurations that respect the joint limits, the tracking per-
formance can be significantly hindered as the solver can
not recover from local minima corresponding to unnatural
poses. A more sophisticated solution is applying regulariza-
tion, i.e. adding an energy function λR(Θ) to the objective
function that nudges the solver towards realistic poses. We
tested the following formulations:

R1(θj) =


0 if θj ∈ [θmin

j , θmax
j ]

(θj − θmax
j )2 if θmax

j < θj

(θj − θmin
j )2 if θj < θmin

j

R2(θj) =


−(θj − θmax

j )2 if |θj − θmax
j | < ϵ

−(θj − θmin
j )2 if |θj − θmin

j | < ϵ

0 else

R3(θj) =
(θmax

j − θmin
j )

4(θmax
j − θj)2(θj − θmin

j )2

In all cases, the full energy function was simply the sum
of all the individual terms. R1 is essentially a soft version
of the clipping operation and hence has the same problem
of not being able to recover from bad poses. R2 can be
thought of as a spring model with finite range ϵ. The is-
sue with this model is the required fine-tuning of the spring
range ϵ. R3 is the index of avoidance proposed by Wan

Figure 2. Due to loose joint constraints, the Inverse Kinematics
solver can create unnatural poses.

et. al. [32]. It is minimized for θj = (θmin
j + θmax

j )/2, i.e.
when θj is exactly in the middle of its two limits. While
this leads to good limit avoidance, it is not suited for hu-
mans, where the joint limits are often asymmetric with the
rest pose being far from the middle of the limits (e.g. the
limits for a knee are roughly [0◦, 150◦], with the rest pose at
0◦). In the end, we achieved the best results by using an in-
dustry standard, dedicated solver for constrained non-linear
least squares problems, namely Ceres [2]. Ceres achieved
high tracking performance while mostly avoiding unnatural
poses and being computationally efficient.

3.1.3 End Effector Placement

However, even Ceres resulted in slightly unnatural poses in
some cases. This is due to its capabilities of exploiting loose
joint constraints. These artifacts mostly occurred for the
foot itself, where the solver could exploit heel and toe joint
rotations as shown in Figure 2. For walking, this problem
can be solved by careful placement of the end effectors: for
the purpose of the IK solver, the heel end effector is treated
as an extension of the shin and the toe end effector is consid-
ered part of the foot and not the actual toe rigid body. Due
to this simplification, ankle joint rotations do not affect the
tracking error of the heel and toe joint rotations do not af-
fect the tracking error of the toe. This simplification works
well since all of the poses encountered during walking are
relatively close to the idle pose where there are no heel and
toe rotations.

3.2. Interpolation

3.2.1 Piecewise Linear Interpolation

The simplest type of interpolation is linear. Given two
control points at times ti, ti+1 with values yi, yi+1 (which
can be scalars or vectors) the interpolant f on the interval
[ti, ti+1] is defined as
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f(t) = yi + (yi+1 − yi)
t− ti

ti+1 − ti
. (3)

This method is simple, efficient and produces continuous
curves. However, the resulting curves are not smooth. In
general the interpolant will not be differentiable at any of
the control points.

3.3. Spline Interpolation

Spline interpolation is a generalization of piecewise lin-
ear interpolation. The values of the spline are still defined
by the control points but there are additional smoothness
constraints. We chose Catmull-Rom splines [9]. On each
interval between two control points this spline is a cubic
polynomial. Given control points at ti, ti+1 with values
yi, yi+1 the interpolant at time t ∈ [ti, ti+1] is computed
according to

f(τ) = yi(2τ
3 − 3τ2 + 1)

+mi(τ
3 − 2τ2 + τ)

+ yi+1(−2τ3 + 3τ2)

+mi+1(τ
3 − τ2)

(4)

where τ = (t− ti)/(ti+1 − ti) and mi is the slope estimate
at control point i defined as

mi =
1

2

(
yi+1 − yi
ti+1 − ti

+
yi − yi−1

ti − ti−1

)
. (5)

So the slope estimate mi is simply the average of the av-
erage slopes in the two intervals next to control point i.
Catmull-Rom splines have a number of desirable properties
for animation. Due to their locality (i.e. the value at con-
trol point i only affects the spline in the two neighboring
intervals), the interpolant can be computed efficiently using
the closed form given in Equation (4). Additionally, the re-
sulting interpolant is continuously differentiable, resulting
in smooth looking animations.

3.3.1 Quaternion Interpolation

Naive linear interpolation connects two points in Rn by the
shortest path between them, i.e. a straight line. However,
quaternions representing orientations correspond to points
on a unit sphere. Hence, linearly interpolating them does
not produce valid orientations. Spherical linear interpola-
tion respects the quaternion structure and instead follows
the shortest path between two points restricted to the unit
sphere. It can be computed as follows:

slerp(q0, q1, t) =
sin((1− t)θ)

sin(θ)
q0 +

sin(tθ)

sin(θ)
q1 (6)

where θ = q0 · q1 is the angle between the two quaternions.

Figure 3. Overview over the control scheme for the leg movement.
The blue boxes correspond to the different states in the gait cy-
cle. Green boxes correspond to transitions between different states
where new targets for the Inverse Kinematics solver are computed.
Purple boxes show the targets that are set for the Inverse Kinemat-
ics solver during the corresponding states of the gait cycle.

3.4. Leg Controller

As a representation in code, we chose to partition the gait
cycle for the lower body into three phases: 50% Stance,
40 % Swing and 10% HeelStrike. The Stance phase
also includes the Toe-Off, which occurs in the second half.
Each phase comes with its own targets and constraints,
which are explained in detail in the following sections. Fig-
ure 3 shows a concise summary of how the leg controller
works. The gait cycle for each leg is handled separately but
synchronized for an offset of half a cycle length. Because
the possible targets are sparse, we make use of interpolation
to create smooth trajectories.

3.4.1 Stance Phase

The Stance Phase is subdivided into two parts, each occupy-
ing half of the total duration. The early stance is character-
ized by the foot being fully in contact with the floor, but not
sliding around. This contact constraint is realized by setting
the IK targets to the current position of the toe and heel. The
heel constraint is slowly released, automatically causing the
heel to lift off as intended. To establish firm ground contact
during the stance the toe joint is automatically set such that
the toe is parallel to the ground.

3.4.2 Swing Phase

The targets of the swing phase get precomputed at the start
of the trajectory and then interpolated through Catmull-
Rom splines. The swing trajectory contains four target
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Figure 4. Visualization of the Swing Trajectory of the heel

points for the heel end effector. It starts out at the current
position and ends at a target position that is computed as
p⃗end = p⃗resting + k · v⃗current + s · ˆ⃗vcurrent. The intuition
behind this formula is that for a zero velocity, we would
like to return to the default configuration and not keep the
heel lagging behind the body. k is the duration of the swing
phase and accounts for the movement of the base, while s is
an offset depending on the step length. The two additional
control points are chosen such that the vertical offsets of the
trajectory match up with observation. The first control point
is chosen at time t = 0.25 and has a vertical offset of 0.07.
The second control point is located at t = 0.75 and vertical
offset 0.03. This results in a trajectory as shown in Figure 4.
In addition the toe joint is moved back to it’s default posi-
tion during the first 10% of the swing phase.

3.4.3 Heel Strike Phase

During heel strike, the heel is fixed to the ground. This is
achieved by setting the IK target to the position that was
targeted at the end of the swing phase. This helps the heel
reach the ground, even if that was not achieved during the
swing phase. This can occur when the joints hit their limits
during the full extension of the knee in the swing phase. The
toe is linearly interpolated towards the resting position on
the ground in front of the heel, making it slowly approach
the ground for touch down.

3.5. Base Movement

In reality the base of a bipedal is not actuated. It’s move-
ment follows the movement of the actuated limbs due to
multibody dynamics. However, since our animation is not
physics-based we treat the base as if it was actuated and
directly control its position and orientation based on user
given velocity commands. In particular the user can input a
forward velocity v⃗ and a turning speed ω. The base position
p⃗ and orientation φ during each timestep are then updated
using a simple Euler integrator:

p⃗i+1 = p⃗i +∆tqheading,i ∗ v⃗i
φi+1 = φi +∆tωi

(7)

where qheading,i is a quaternion corresponding to the
heading orientation at timestep i. While the vertical move-

Figure 5. The trajectory of the left shoulder and elbow rotation in
the sagittal plane during one gait cycle for walking.

ment of the base is often modelled using an inverted pendu-
lum model [11] we opted for a simpler solution. A small si-
nusoidal offset is added to the vertical position that achieves
close results to an inverted pendulum model. In particular
the vertical offset is 0.02 sin (4πτ) where τ ∈ [0, 1] is the
current progress during the gait cycle.

3.6. Arm Swing

A distinctive feature of the human gait is the arm swing,
where each arm swing is synchronized with the opposite
leg. Mechanically, the main function of the arm swing is
counteracting the torque on the vertical body axis induced
by the leg swing [27]. Due to this, the gait becomes more
energy efficient and has reduced metabolic costs [4]. Addi-
tionally, the arm swing can help stabilizing the gait against
external perturbations [8].

3.6.1 Controlling the Arm Swing

As previously explained, the leg motion is controlled by
tracking heel and toe positions via IK. By planning a hand
trajectory the arms can also be controlled with IK. This ap-
proach however, proved to result in unsatisfactory anima-
tions. Planning a realistic hand trajectory is difficult, as
even slight errors compared to a real arm swing result in
unnatural movement. A simpler solution, resulting in more
natural movement, is to directly control all the arm joints.
Joint angle trajectories for one gait cycle are precomputed
based on Catmull-Rom splines. The control points of the
splines are set according to a combination of measured val-
ues found in Biomechanics literature [14], [35] and manual
adjustments to improve the look of the animations. Fig-
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Figure 6. Visualization of a curved Swing Trajectory

ure 5 shows the resulting trajectories (note that our gait cy-
cle is in the order (Stance, Swing, Heelstrike), while other
literature typically starts with the Heelstrike). These trajec-
tories are in phase with the right leg. The trajectories for
the right shoulder and elbow are exactly analogous, except
they are in phase with the left leg. In addition to the arm
swing we also included small upper body rotations around
the spine. This rotation follows a simple sinusoidal curve
given as θspine(τ) = 2.0◦ sin(2πτ − 3

5π) where τ ∈ [0, 1] is
the current progress in the gait cycle.

3.7. Turning

To account for curved trajectories, the heading of the
robot base needs to be taken into consideration. To make the
swing phase follow a curved trajectory, the default swing
path (Figure 4) is modified in the following way:

p0 = heelStart;
p1 = p0 + (heelEnd - heelStart)/4;
p2 = p1 + rot1*(heelEnd - heelStart)/2;
p3 = p2 + rot2*(heelEnd - heelStart)/4;

The rotations rot1 and rot2 are a product of spherically
linearly interpolated quaternions, standing for the rotation
during the current segment, and the inverse of the current
rotation. This conserves the length of the path the heel takes
and rotates it along a curved path as shown in Figure 6.

Phases where ground contacts occur are explicitly not
adjusted for turning. If there was rotation added in those
parts, the ground contacts would need to rotate in place,
which produces unrealistic behaviour because, when ac-
counting for physics, this would create unnecessary friction.
Instead these rotations are absorbed by the joints.

3.8. Uneven Terrain

To enable walking on uneven terrain, we introduced a
new ground model, implemented as part of the bonus in as-
signment one [31]. The height of the terrain gets computed
by casting a ray down from the sky and checking for the y-
coordinate of the hit. This height offset was then added to
all the target positions that are in contact with the ground.

Figure 7. Visualization of a trajectory while running.

3.9. Running

Creating a realistic running animation requires a number
of modifications from the walking controller.

The first issue lies in more articulated poses occurring
while running than during walking. This leads to the sim-
plified end effector placement explained in Section 3.1 fail-
ing. To properly track the heel and toe during running their
end effectors had to be placed on their actual rigid bodies.
In order to prevent unnatural poses during the final part of
the stance phase, the toe joint limits then have to be dy-
namically updated during the animation. During the con-
tact phase they are constrained to be parallel to the ground.
These limits are lifted towards the end of the stance phase
where they return to their default values. Let joint j be a
toe joint, with default joint limits θmin

j , θmax
j . If θ∗j is the re-

quired toe angle for parallel toe-ground contact then the toe
limits are computed according to

θ̃min
j = (1− τ)(θ∗j − 10−6) + τθmin

j

θ̃max
j = (1− τ)(θ∗j + 10−6) + τθmax

j

(8)

where τ ∈ [0, 1] is defined to be 0 at 90% of the stance
phase, 1 at the start of the swing phase and increases linearly
between these two points.

The swing trajectory is computed similarly to the swing
for walking. The first control point has a higher target
height with a vertical offset of 0.5. During running the leg
has a much faster swing and due to the added momentum
it is typical that the foot first ”overshoots” the next contact
position. To achieve this, an additional offset of 0.3 in the
running direction is added to the second control point. Fi-
nally one additional control point is added between the first
and second control point at time t = 0.35 to further improve
the realism. This point is linearly interpolated between the
first and second control point and has an added vertical off-
set of 0.05. The resulting trajectory can be seen in Figure 7.

The base movement behaves similarly to that of the
walking animation. The only difference is a changed ver-
tical offset that is based on measured running trajectories
[22]. The arm movement was also adjusted. Most runners
keep their elbows close to a 90◦ angle. However, keeping
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Figure 8. Joint angle trajectories of the left shoulder, elbow and
the left shoulder torsion during one gait cycle for running.

the elbow angle fixed to that number looks too stiff, hence
we added some offset to create a more natural motion. In
addition, arm torsion is included so that the arms are slightly
pulled in front of the chest during the swing. The joint angle
trajectories for running can be seen in Figure 8. The ampli-
tude of the spine rotation was also increased to 7◦. Finally,
the lengths of the different phases during the gait cycle were
adjusted, as the swing phase takes up a larger percentage of
a full cycle, and the length of a cycle itself was reduced to
match the higher stepping cadence during running.

4. Results

Unfortunately it is difficult to objectively quantify and
assess the quality and naturalness of procedurally generated
motion. Reinforcement learning based approaches can be
assessed by their accumulated rewards and motion match-
ing techniques can be judged by how close the resulting mo-
tion is to the used motion capture data. For a fully proce-
dural approach such an evaluation based on a scalar metric
is not straightforward. It would be possible to compare the
joint angle trajectories to measured data, however due to
relatively large, personality-based variations in those trajec-
tories it is not clear what exact trajectory should be used

as a reference. While a mean trajectory seems sensible at
first we found that it is not actually a good measure as ani-
mations purely based on this mean trajectory look uncanny.
Hence, we did not include any scalar performance measures
and instead resort to just showing the generated motion.

4.1. Animation Quality

Figure 9 and Figure 10 show a few snapshots during one
full gait cycle of the walking and running animations. Our
method is able to reproduce distinctive features of the hu-
man gait. The gait starts with firm ground contact of the
foot that transitions into the Toe-Off followed by the swing
phase and is concluded by the heelstrike. Note that during
walking there is a phase of double support since the stance
phases of the two different legs overlap (fourth image in
Figure 9). For running this is replaced by a phase without
any ground contact as the swing phase makes up a larger
part of the whole gait cycle leading to overlapping swing
phases for both legs (fourth image in Figure 10). For ani-
mation videos we refer to our GitHub repository [6].

4.1.1 Performance

To benchmark our performance we ran the simulation in dif-
ferent scenarios with a frame rate capped at 1024 fps. We
compared the performance when rendering the full scene,
i.e. the full body model, ground, background + debug info,
and when rendering only the skeleton. We found that when
rendering the full scene, performance is bottlenecked by
the rendering of the floor and not the locomotion controller.
When not rendering the the full scene performance is signif-
icantly increased and the high rate at which the controller is
able to perform can be seen. However, running and circular
movement decrease the performance. This is due to the IK
solver needing more time to find the joint configurations for
the more articulated motion. The tests were performed on
a consumer grade laptop. These tests show that our plan-
ning and control pipeline is more than capable of running
at interactive rates and would hence also be suited to be ap-
plied to larger crowds. The exact results can be found in
Table (1).

5. Conclusion

In this work we presented biomechanically grounded
strategies to synthesize realistic motion for digital humans.
We presented conceptually simple planning of foot trajec-
tories that can replicate the key features of human leg mo-
tion. In addition we presented strategies able to synthesize
realistic supporting movement of the arms and upper body.
Finally we extended these principles to allow walking in
curved lines, on uneven terrain and introduced a different
type of locomotion, namely running.
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Figure 9. Visualization of one gait cycle while walking.

Figure 10. Visualization of one gait cycle while running.

Scenario Full Rendering Rendering skeleton
Walking
in a line

195 FPS 746 FPS

Walking
in a circle

188 FPS 298 FPS

Running
in a line

159 FPS 242 FPS

Running
in a circle

145 FPS 221 FPS

Table 1. Performance Benchmark on a Laptop with a Ryzen 7
5800H CPU (@3.2 GHz)

However, there are some limitations to our work. Firstly,
physics is not taken into account. Hence, without modi-
fications our method will not work in applications where
the laws of physics have to be considered. One possible
solution would be to keep the planning strategies as pre-
sented and use the target joint angles as targets for a sim-
ple Proportional-Derivative controller. While our synthe-
sized motion is able to handle some forms of uneven ter-
rain there is no explicit object avoidance during the path
planning. It would be good to check for possible collisions
during planning and adjust the trajectories to avoid those
obstacles. Furthermore, the height of the base would need

to take into account the terrain change as well. Our cur-
rent implementation strictly differentiates between walking
and running. Having a method that can smoothly transition
from one type of locomotion to the other based on the target
velocity would be desirable. Finally, it might also be useful
to walk backwards or sideways without turning.

6. Contributions of team members

Some of the mentioned features were tested but not in-
cluded in the final version. The exact work distribution is as
follows:

• Joshua: gait cycle; contact planning; contact con-
straints; swing trajectories; IK solver; joint based
arm/upper body control; modifications for running

• Marie: base trajectory; pelvis movement; mesh im-
provements

• Rafael: contact planning; contact constraints; swing
trajectories; turning motion; uneven terrain; back-
ground render, joint angle plotting

• Yucheng: IK based arm/upper body control; pelvis
movement; improvements to arm-leg synchronization
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